Noninvasive & Continuous Hemoglobin (SpHb®) Monitoring
Lab Hb: Intermittent & Delayed Results While Transfusion Decisions Are Made in Real Time
How is Masimo’s Solution Different?

Continuous SpHb provides real-time indication of *changes* in Hb, as well as when Hb is *stable*.
How is Masimo’s Solution Different?

With Masimo SpHb:

- Noninvasive
- Continuous

Masimo SpHb permits continuous measurement of hemoglobin between invasive blood samples.
rainbow® Multi-wavelength Technology

2 wavelengths of light used to measure oxygen saturation (SpO₂)

7+ wavelengths of light used by rainbow® to measure SpHb, SpCO, SpMet, and SpO₂
rainbow® Technology

SpO2, Pulse Rate plus Additional Blood Constituents which previously required a CO-Oximeter... is known as “Pulse CO-Oximetry”
Multi-Parameter Trends of SpHb (and PVI) May Facilitate Transfusion Decisions
Intermittent Invasive Hemoglobin Sampling vs Real-time SpHb Trending Between Invasive Hb Samples

Intermittent Hb sampling may not provide the full picture...

> Continuous SpHb provides real-time indication of whether hemoglobin is stable, dropping, or rising

> Continuous visibility to Hb changes in between lab samples may help avoid unnecessary transfusions...

 - When *SpHb is stable* when Hb is perceived to be dropping, or
 - When *SpHb is rising* when Hb is perceived not to be rising fast enough, AND...

> Detect post-op bleeding IF *SpHb is dropping* when Hb should be stable
Continuous SpHb: Stable Trend May Facilitate Delaying Transfusions at Lower Hb Levels

SpHb visible during case

Stable trend may help avoid transfusion when Hemoglobin levels are low

Total Cystectomy – 80 y/o Male
Continuous SpHb: Rising Trend May Facilitate Delaying Transfusion of Additional Units

Liver transplant – 69 y/o female

SpHb data blinded during case
Hemoglobin Measurement Variability between Two of the Same Model Lab Device

- Two IDENTICAL models of five different types of laboratory CO-Oximeters
- Device A vs. Device B of each model analyzed 72 consecutive blood samples from 12 pts

<table>
<thead>
<tr>
<th>Manufacturer Model</th>
<th>Radiometer ABL-735</th>
<th>Bayer Rapidlab 860</th>
<th>Nova STP CCX 1</th>
<th>Roche Omni S</th>
<th>Instrumentation 682 CO-Oximeter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bias (g/dL)</td>
<td>0.0</td>
<td>-0.3</td>
<td>-0.8</td>
<td>-0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>1st Standard deviation (g/dL)</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.8</td>
<td>1.2</td>
</tr>
<tr>
<td>2nd Standard deviation (g/dL)</td>
<td>0.2</td>
<td>0.4</td>
<td>0.6</td>
<td>1.6</td>
<td>2.4</td>
</tr>
</tbody>
</table>

Two calibrated lab devices of the same model type
1st standard deviation = Avg of 0.5 g/dL; highest 1.2 g/dL

Hemoglobin Measurement Variability Between Two Different Model Lab Devices

Two different lab devices
- pHOxTM CO-Oximeter (Nova) COULTER® Ac·T diff2™ (Beckman Coulter)

Consecutive blood samples measured on both devices

Two calibrated lab devices analyzing sequential blood draws varied by up to 2 g/dL

N=471 samples from 33 patients

SpHb, Dept CO-Oximeter, Hemocue

Point-to-Point Accuracy vs Lab CO-Oximeter

- 471 hemoglobin measurements from 62 Surgical ICU patients
- 3 Hb methods vs. reference Hb (central laboratory hematology analyzer, Sysmex XT2000i)
 - SpHb, satellite CO-Oximeter (Siemens RapidPoint 405), point-of-care device (HemoCue 301)

SpHb, Dept CO-Oximeter, Hemocue TREND Accuracy vs Lab CO-Oximeter

- 471 hemoglobin measurements from 62 Surgical ICU patients
- Changes in 3 Hb methods vs. changes in reference Hb (central laboratory hematology analyzer, Sysmex XT2000i)
 - SpHb, satellite CO-Oximeter (Siemens RapidPoint 405), point-of-care device (HemoCue 301)

R=0.64 R=0.60 R=0.39
Continuous SpHb is shown to help reduce transfusions – without changes in transfusion protocol
Randomized Controlled Trial in Lower Blood Loss Surgery
Objective, Patients, Randomization & Methods

> **Objective**
 - Determine whether Continuous SpHb monitoring helps to reduce surgical transfusion frequency and average amount transfused in lower blood loss surgery

> **Patients**
 - Orthopedic surgery (lower likelihood of transfusion) at academic medical center (Mass General Hospital, Boston, MA)

> **Methods**
 - **Standard Care Group**
 - Treat as normally would
 - **SpHb Group**
 - Treat as normally would **but** add continuous SpHb
 - **No** transfusion protocol changes related to SpHb
SpHb Monitoring Impact on Frequency of RBC Units Transfusions in Lower Blood Loss Surgery

Randomized controlled trial in 327 orthopedic surgery pts, 157-Standard Care & 170-SpHb
* p=0.03 vs. Standard Care Group;

Ehrenfeld JM et al. ASA. 2010. LB05 (abstract).
SpHb Monitoring Impact on Average RBC Units Transfused per Patient in Lower Blood Loss Surgery

Randomized controlled trial in 327 orthopedic surgery pts, 157 Standard Care & 170 SpHb
* p=0.03 vs. Standard Care Group; † p=0.02 vs. Matched Retrospective Cohort

Ehrenfeld JM et al. ASA. 2010. LB05 (abstract).
SpHb Monitoring Impact on Average RBC Units Transfused per Patient in Lower Blood Loss Surgery

Randomized controlled trial in 327 orthopedic surgery pts, 157 Standard Care & 170 SpHb

**p<0.0001 vs. Standard Care Group; †† p<0.0001 vs. Matched Retrospective Cohort

Ehrenfeld JM et al. ASA. 2010. LB05 (abstract).
Randomized Controlled Trial
No Differences in Other Variables

> Frequency of patients receiving intraoperative Hb testing in SpHb and Standard Care Groups
 - 11.8% vs. 16.3%, p=ns

> Mean number of Hb tests performed in SpHb and Standard Care Groups
 - 0.24 vs. 0.21 tests per case, p=ns

> Safety variables
 - No patient from either group received a transfusion during the immediate twelve-hour postoperative period
 - No differences at 28 days in the rate of post-operative complications between the SpHb and Standard Care Groups (1.9% vs. 3.0%, p=ns)

Ehrenfeld JM et al. ASA. 2010. LB05 (abstract).
If SpHb Monitoring Reduces RBC Transfusions in Lower Blood Loss Surgery…

Is it possible that SpHb monitoring could have an even greater impact in high blood loss surgery?
Prospective Cohort Study in High Blood Loss Surgery
Objective, Patients, Randomization & Methods

> **Objective**
 - Determine whether Continuous SpHb monitoring helps to reduce surgical transfusion frequency and average amount transfused in high blood loss surgery

> **Patients**
 - Neurosurgery at academic medical center (Cairo University, Egypt)

> **Methods**
 - **Standard Care Group**
 - Treat as normally would
 - **SpHb Group**
 - Treat as normally would but add continuous SpHb
 - **Both Groups**
 - Blood samples taken at baseline and when EBL was ≥15% of total blood volume
 - RBC transfusion initiated if hemoglobin was ≤10 g/dL and continued until the EBL was replaced and hemoglobin >10g/dL

Awada W et al. STA. 2013 (abstract).
SpHb Monitoring Impact on Frequency of ≥3 RBC Unit Transfusions in High Blood Loss Surgery

Prospective cohort study in 106 neurosurgery surgery pts, 61 Standard Care & 45 SpHb
*p<0.01 vs. Standard Care Group

Awada W et al. STA. 2013 (abstract).
SpHb Monitoring Impact on Average RBC Units Transfused per Patient in High Blood Loss Surgery

Prospective cohort study in 106 neurosurgery surgery pts, 61 Standard Care & 45 SpHb

**p<0.001 vs. Standard Care Group

↓47% Relative Reduction
SpHb Clinical Benefits Extend Beyond Transfusion Decisions…

Continuous SpHb can also help identify post-op bleeding
Detecting Post-Op Bleeding

> Bleeding is frequent in surgery, ICU, OB pts
 - Up to 35% of patients\(^1\)

> Bleeding is a significant risk factor
 - Late detection further increases the risk\(^2\)
 - Responsible for 19% of in-hospital maternal deaths\(^3\)

> Late bleeding detection impact on patient care
 - Average hospital has multiple patients per year with serious injury or death due to late detection of bleeding\(^4\)

> Bleeding significantly increases the total cost of patient treatment\(^2\)

> Low Hb identifies almost 90% of patients with bleeding\(^5\)
 - But traditional lab measurements are infrequent and delayed

> Joint Commission sentinel event alert for OB patients
 - Calls for protocols to improve the ability to detect hemorrhage\(^6\)

Post-trauma Surgery Case Study

Hb Value (g/dL)

Standing Order Lab tHb ordered early due to declining SpHb values

Patient transported to OR for splenectomy

Detection time without SpHb?

© 2013 Masimo
rainbow® Technology Clinical Benefits Extend Beyond Transfusion Decisions…

PVI® helps with patient fluid management, which impacts outcomes and transfusion decisions.
Fluid Administration Challenges

> **Fluid administration is critical**
 - To increase cardiac output and optimize patient status, enabling end organ preservation

> **Unnecessary fluid administration associated with increased morbidity and mortality**

> **Fluid administration causes hemodilution**
 - Which reduces Hb concentration and increases likelihood of transfusion

> **Traditional static measurements not reliable to predict volume responsiveness**
 - CVP, SBP, DBP, Pulse Pressure, Wedge Pressure, Cardiac output

> **New dynamic monitoring technologies are effective**
 - Proven to improve outcomes but are invasive or complex - and costly
 - Pulse pressure variation, stroke volume variation
 - Appropriate for higher-risk patients

> **Opportunity to improve care in moderate to low risk population**
 - Using low cost, noninvasive technology

Thank You